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Figure 2. The key to the symbols used in this figure is as follows: • , 
C60

2+; A, C60NH2
+; D, C60NH2(NH3)J+. (a) Percent total ion intensity 

of product ions produced from C60
2+ + NH3 reactions as a function of 

ammonia pressure in the target cell. The collision energy EUB is 2.0 eV. 
(b) Percent total ion intensity of product ions produced from C60

2+ + 
NH3 reactions as a function of collision energy.26 The pressure of am
monia in the collision cell is 7.3 mTorr. 

Table I. Ionization Energies for Molecules Used in This Study 

molecule 

NH3 

O2 + 

C60 

CH4 

"Reference 15. 

IE (eV) 

10.2° 
12.0° 

>12.0* 
12.6° 

'Reference 17. 

molecule 

N2 

Ar 
He 

'Reference 25. 

IE (eV) 

15.6° 
15.7' 
24.6' 

respectively. One would expect that a charge-transfer reaction 
will only occur if the IE of the target molecule is below the second 
IF and C60, as illustrated in reaction 5. While the recombination 

C60
2+ + M ^ (C60

+-M+) IE(M) < 12.0 eV (5) 

energy is sufficient to ionize ammonia, other gases having a larger 
IE should not react with C60

2+. Indeed, we have found that the 
passage of C60

2+ through such gases (He, Ar, N2, and CH4) at 
low collision energy exhibits no reactivity. However, passage 
through oxygen does exhibit reactivity, which we will report in 
a later paper. 

In conclusion, we have observed an associative charge exchange 
reaction for C60

2+ with ammonia which does not occur for C60
+ 

under identical experimental conditions. We believe that this is 
indicative of a new family of charge-exchange reactions for C60

2+ 

which will occur for any molecule whose IE lies below the IE of 
C60

+. This line of reasoning suggests that the inertness of C60
+ 

is due to the relatively low IE of C60, which prevents direct 
charge-transfer reactions from occurring.23,24 Our work also 
suggests that C60

+ may undergo similar charge-exchange reactions 
with molecules whose IE lies below 7.6 eV. We are now in the 
process of examining this as well as gas-phase chemistry for other 
C„m+ ions. 

Acknowledgment. We gratefully acknowledge the financial 
support of this work by the Office of Naval Research and the 
Alfred P. Sloan Foundation. We also acknowledge the assistance 
of Prof. Jiali Gao in generating the proposed structure of C60NH2

+. 

(20) McElvany, S. W.; Ross, M. M.; Callahan, J. W. Mater. Res. Soc. 
Symp. Proc. 1991, 206, 697. 

(21) Petrie, S.; Javahery, G.; Wang, J.; Bohme, D. K. J. Phys. Chem., in 
press. 

(22) Stry, J. J.; Ccolbaugh, M. T.; Garvey, J. F. In preparation. 
(23) Zimmerman, J. A.; Eyler, J. R.; Bach, S. B. H.; McElvany, S. W. J. 

Chem. Phys. 1991, 94, 3556. 
(24) Rohlfing, E. A. J. Chem. Phys. 1990, 93, 7851. 
(25) Lias, S. G.; Bartness, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. 

D.; Mallard, W. G. Gas Phase Ion and Neutral Thermochemistry; American 
Chemical Society and American Institute of Physics: New York, 1988; Vol. 
17, Suppl. 1. 

(26) In Figure 2 we note that due to the multiple bimolecular collisions 
occurring in the collision cell, the Em listed pertains only to the initial collision 
of the selected fullerene ion with a neutral ammonia molecule. 

ization of the C60O species as an epoxide,9 we feel that the 
C60NH2

+ species corresponds to the formation of a protonated 
aziridine whose structure is shown as an inset in Figure 1. 

For both the amine and aziridine structures, the two projecting 
hydrogens from C60NH2

+ should be highly susceptible to hydrogen 
bonding, therefore favoring a doubly coordinated species. Indeed 
we do observe the preference for the formation of C60NH2(NH3)2

+ 

at high ammonia pressures. Further support for this effect comes 
from the collision energy regime required for removal of the two 
bound NH3 molecules. The collision energy dependence for the 
production of C60NH2

+ appears to be quite distinct from that for 
the production of C60NH2

+jNH3)1.3 ions (Figure 2b), suggesting 
that the NH3's are indeed more weakly associated than the NH2. 

The reactivity of ammonia with C60
2+ correlates with the low 

ionization energies (IEs) of this molecule,15 as shown in Table 
I. The IEs for C60 and C60

+ are 7.6 eV16 and >12.0 eV,17 
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Enzymatic catalysis is characterized by complex formation with 
substrates and very fast chemical conversion within the complexes. 
Many attempts have been made to design artificial enzymes ca
pable of both complexation and catalysis. Both poly(ethylenimine) 
(PEI)1"3 and cyclodextrin (CD)4""6 derivatives have been extensively 
exploited in the design of biomimetic catalysts. Several functional 
groups were attached to PEI, and hydrophobic microenvironments 
were created on PEI by alkylation or acylation of the nitrogen 
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Figure 1. Plot of the pseudo-first-order rate constant against [C]0 for 
deacylation of 2 (a = 1000) by CD-PEI (a) or PEI (b) and of 3 (o = 
100) by CD-PEI (c) or PEI (d). Different a values were used for 2 and 
3 in order to put their kinetic data on the same graphical scale. [C]0 
represents the total concentration of CD moiety of CD-PEI or CD. [C]0 
for PEI is taken as 1.4% of the residue molar concentration of PEI, so 
that it corresponds to the concentration of PEI moiety of CD-PEI. For 
b and d, k0 is proportional to [C]0. When [C]0 = 0.3 mM, deacylation 
of 2 by CD-PEI was 30 or 600 times faster than that by PEI or CD, 
respectively. When [C]0 = 0.6 mM, deacylation of 3 by CD-PEI was 
160 or 900 times faster than that by PEI or CD, respectively. 

atoms of PEL Although several PEI derivatives manifest catalytic 
activity in various organic reactions, creation of specific binding 
sites on PEI is needed in order to mimic enzymes better. Many 
derivatives of CD have been prepared as enzyme mimics. Since 
CD is much smaller than enzymes, introduction of several catalytic 
groups on CD in positions suitable for high catalytic efficiency 
is not easy. Combination of PEI with CD may lead to a cavi
ty-containing molecular skeleton suitable for incorporation of 
multiple catalytic elements. This is schematically illustrated in 
1 where filled circles indicate possible catalytic functional groups. 

In the present study, 0-CD was covalently linked to PEI by the 
reaction of PEI (0.55 monomeric residue mol) with mono-6-(p-
tolylsulfonyl)-/3-CD (7.7 mmol) in 200 mL of DMSO at 60 0C 
for 6 h followed by purification through dialysis, leading to a 
0-CD-containing PEI (CD-PEI). The content of CD in CD-PEI 
was estimated as 1.3% of the monomeric residues of PEI on the 
basis of initial burst kinetic studies (see below) and as 1.6% on 
the basis of elemental analysis. On the average, a PEI (MW 
60000) molecule contains 1400 monomeric residues, and therefore, 
CD-PEI contains 18-22 CDs. 

Kinetics of the deacylation of esters 2 and 3 was studied in the 
presence of CD, PEI, or CD-PEI with [C]0 > [S]0 ([C]0 is the 
initially added concentration of hosts and [S]0 that of 2 or 3; [S]0 
was ca. 5 X 10"5 M). Rate measurements were performed at pH 
7.65 (0.5 M NaCl and 0.02 M phosphate buffer) and 25 °C in 
the presence of 1% (v/v) acetonitrile (used as the solvent for the 
stock solutions of 2 and 3). Kinetic data are illustrated in Figure 
1. Analysis of the saturation kinetic data of CD-PEI led to kax 
= (3.53 ± 0.08) X 10"3 s-' and Km = (6.00 ± 0.88) X 10"5 M 
for 2 and kax = (6.81 ± 0.58) X 10"2 s"1 and Km = (6.52 ± 1.24) 
X 10"4 M for 3. It appears that 2 is bound by CD-PEI more 
strongly than 3 and the carboxylate of 2 provides an extra binding 
interaction with the ammonium ion of CD-PEI. 

The kinetics of deacylation of 2 or 3 was also examined in the 
presence of CD-PEI with [C]0 < [S]0. Biphasic kinetics was 
observed, and the amount of the phenol released during the initial 
burst stage corresponded to the amount of CD, indicating that 

acylation of the nucleophilic amine by the substrate inactivates 
CD-PEI. It is possible that the ferf-butylbenzoyl group of the 
acylated polymer occupies the CD cavity.7 

The efficient binding of 2 and 3 by CD-PEI, in contrast to the 
weak binding by PEI as reflected by the linear rate data of Figure 
1, is achieved by the interaction of the tert-butylphenyl ring of 
the substrate with the CD ring. The greater reactivity of CD-PEI 
compared with PEI is due to efficient complexation of the esters 
by CD-PEI and effective nucleophilic attack within the complexes. 
The much faster rate of CD-PEI compared with CD indicates 
that the amino groups present on the PEI portion, instead of the 
hydroxyl group on the CD rim, act as the nucleophile (4). The 
amino groups on the PEI backbone may have better access to the 
ester linkage of the bound substrate.8,9 

CD-PEI may be regarded as either a derivative of CD with 
a convergent nucleophile located above the CD cavity or a PEI 
derivative containing specific binding sites. The next step toward 
obtaining better artificial enzymes containing both PEI and CD 
is to introduce a second catalytic functional group in a planned 
position near the CD cavity. 
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Buckminsterfullerene (C60), the newly discovered spherical 
allotrope of carbon, has precipitated a flurry of recent research 
endeavors.1 A severe limitation to this research is the difficulty 
in producing gram quantities of C60 free of the higher molecular 
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